Transmathematics

Dr James Anderson

安德生

Topics

- Why computer scientists like totality:
- Transarithmetic - no error states
- Transphysics - works at singularities
- Transcomputing - faster, safer, more accurate
- Summary

Totallity

- Totality - every function is a total function
- It is not necessary to waste states - so hardware and software can be more efficient
- Every syntactically correct program is semantically correct - except for physical intervention, programs cannot crash

Totallity

- Geometrical construction of the transreal numbers (1997)
- Axiomatisation and machine proof of the consistency of transreal arithmetic (2007)
- Human proof of the consistency of transreal and transcomplex arithmetic $(2014,2016)$
- Current research on the foundations and applications of transmathematics

Arithmetica Universalis

Sir Isaac Newton

Arithmetica Universalis

- Newton used the arithmetica universalis, which predates real arithmetic
- Arithmetica universalis does not outlaw division by zero
- Arithmetica universalis allows a number to have any factors. For example, $0=0 \times 1 \times 2 \times \ldots$ has factors $0,1,2, \ldots$ on the right hand side
- Modern integer factors are required to be smaller than the number they factorise

Arithmetica Universalis

- Newton gave a faulty proof that division by zero is inconsistent
- Newton defined $x=y \Longleftrightarrow x-y=0$
- This blocks transreal $\pm \infty, \Phi$ because

$$
(-\infty)-(-\infty)=\infty-\infty=\Phi-\Phi=\Phi
$$

- If we read Newton's equal (aequo) as a modern equality and restrict division by zero to transreal division by zero then the arithmetica universalis is transreal arithmetic and Newton's mechanics (physics) work at singularities!

Transreal Numbers

Transreal numbers, t , are proper fractions of real numbers, with a non-negative denominator, d, and a numerator, n, that is one of $-1,0,1$ when $d=0$

$$
t=\frac{n}{d}
$$

With k a positive constant:

$$
-\infty=\frac{-k}{0}=\frac{-1}{0}
$$

$$
\Phi=\frac{0}{0}
$$

$$
\infty=\frac{k}{0}=\frac{1}{0}
$$

Improper Fractions

Improper fractions have a negative denominator (-k) which must be made positive before any arithmetical operator is applied

$$
\frac{n}{-k}=\frac{-n}{-(-k)}=\frac{-1 \times n}{-1 \times(-k)}=\frac{-n}{k}
$$

Multiplication

$\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$

10 of 69

Division

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}
$$

11 of 69

Addition of Two Infinities

$$
\begin{gathered}
\infty+\infty=\frac{1}{0}+\frac{1}{0}=\frac{1+1}{0}=\frac{2}{0}=\frac{1 \times 2}{0 \times 2}=\frac{1}{0}=\infty \\
\infty+(-\infty)=\frac{1}{0}+\frac{-1}{0}=\frac{1-1}{0}=\frac{0}{0}=\Phi \\
-\infty+\infty=\frac{-1}{0}+\frac{1}{0}=\frac{-1+1}{0}=\frac{0}{0}=\Phi \\
-\infty+(-\infty)=\frac{-1}{0}+\frac{-1}{0}=\frac{(-1)+(-1)}{0}=\frac{-2}{0}=\frac{(-1) \times 2}{0 \times 2}=\frac{-1}{0}=-\infty
\end{gathered}
$$

General Addition

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

Subtraction

$$
\frac{a}{b}-\frac{c}{d}=\frac{a}{b}+\frac{-c}{d}
$$

Associativity

$$
\begin{aligned}
& a+(b+c)=(a+b)+c \\
& a \times(b \times c)=(a \times b) \times c
\end{aligned}
$$

15 of 69

Commutativity

$$
\begin{aligned}
& a+b=b+a \\
& a \times b=b \times a
\end{aligned}
$$

16 of 69

Partial Distributivity

$$
a(b+c)=a b+a c
$$

When $\quad a \neq \pm \infty$ or

$$
b c>0 \text { or }
$$

$$
(b+c) / 0=\Phi
$$

17 of 69

Real Arithmetic versus Transreal Arithmetic

- Real arithmetic checks for division by zero and, if found, it fails
- Transreal arithmetic checks for division by zero and always succeeds

Newtonian Physics

- Newton used the arithmetica universalis
- The arithmetica universalis can be restricted to real arithmetic by outlawing division by zero
- The arithmetica universalis can be extended to transreal arithmetic by using a modern equality and restricting division by zero to transreal division by zero

Newtonian Physics

- If we read Newton's 18th Century physics as applying to real numbers then they fail at singularities
- If we read Newton's 18th Century physics as applying to transreal numbers then they operate at singularities

Transreal Analysis

- Transreal analysis replaces the symbols $-\infty, \infty$ of real analysis with the transreal numbers $-\infty=\frac{-1}{0}$ and $\infty=\frac{1}{0}$
- Every real result of real analysis arises as the same real result of transreal analysis
- Transreal analysis has some results that cannot be obtained by real analysis

Trans-Newtonian Physics

- Newton's laws of motion and gravity can be restated with transreal arithmetic and transreal analysis
- Hence Trans-Newtonian physics operates at singularities

Transreal-Number Line

Φ

R

- The transreal-number line can be deduced from transreal arithmetic using epsilon neighbourhoods

Transreal-Number Line

Φ

- Nullity, Φ, is unordered and lies off the transrealnumber line

Transphysics

Φ

R
∞

- A nullity force, $\boldsymbol{\Phi}$, has no component in the extended-real universe, $[-\infty, \infty]$, so behaves as a zero force in this universe

25 of 69

Two's Complement

 -2 $110 \underbrace{\substack{-1 \\ 0}}_{-3101} \underbrace{0}_{0} 0$
Two's Complement

- Wrap-around error
- Weird-number error
- One more negative than positive numbers
- Prioritises range over correctness!
- Not embedded in the real-number or floating-point-number lines - so harder to convert real analysis into two's complement algorithms

Trans-Two's Complement

Trans-Two's Complement

- No wrap-around error
- No weird-number error
- Equal number of positive and negative numbers
- Obtains maximal range but with round-off to infinities
- Embedded in the transreal-number line so easier to convert transreal analysis into trans-two's complement algorithms

Floating-Point (NaN)

X11111111111 XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

64-Bit Floating-Point

- 9,007,199,254,740,990 error (NaN) states
- 25,000 error (NaN) states for each star in our Milky Way galaxy!
- Not embedded in the realnumber line so harder to convert real analysis into floating-point algorithms

31 of 69

Transfloating-Point

- Replace negative zero, $-0 \not \equiv 0$, with nullity Φ
- Replace NaNs by mapping $\pm \infty$ onto the extremal bit patterns
- Increment the exponent bias by one

Transfloating-Point

- Twice the range of real numbers mapped to a doubling of accuracy, by halving the smallest, representable number
- Embedded in transreal-number line so easier to convert transreal analysis into transfloating-point algorithms

Transcomplex Plane

Revolution of the transreal number line

Φ

34 of 69

Transangle

Real and nullity angles
are arc length divided by radius in a unit wheel
$\Phi=\frac{0}{0}$ radians
But where are the infinity angles?

35 of 69

Transangle

The infinity angles are the windings of the outer line segments at the apex of the unit cone
$2 \infty \pi+\theta=\infty$ radians
$-2 \infty \pi+\theta=-\infty$ radians

36 of 69

Transtangent

Ancient construction of trigonometric functions as ratios, with modern annotations

$-\pi / 2$
$+3 \pi / 2$
37 of 69

Transtangent

38 of 69

Transtangent

- Is defined for all transreal angles
- Is single valued everywhere
- The real values of the transtangent have period π
- The infinite values of the transtangent have period 2π
- The nullity values of the transtangent occur at $-\infty$, ∞, Φ with Φ being the canonical position

Transtangent

- The ancient construction of the tangent has transreal solutions that are not available to modern (non-trans) geometry and trigonometry
- The ancient construction of the tangent is identical to the transtangent
- The ancient construction of the tangent agrees with the transtangent's transpower series

Degenerate Cartesian Co-ordinates

41 of 69

Non-Degenerate

 Cartesian Co-ordinates

 Cartesian Co-ordinates}

$$
\left.\begin{array}{ll}
(-\infty, \infty)=[\infty, 3 \pi / 4]
\end{array}\right) \quad(0, \infty)=[\infty, \pi / 2]
$$

42 of 69

Transcomplex Integral

- Transcomplex numbers are represented in polar form to avoid Cartesian degeneracy
- The transomplex integral is based on the nondegenerate Cartesian co-ordinates

Transcomplex Analysis

- With the exception of the general transcomplex derivative, which has not yet been developed, all areas of complex analysis have been extended to transcomplex analysis

Transcomplex Arithmetic

- Solid cylinder composed of unit radius discs with zero and all positive real heights
- Unit radius disc at infinite height
- Convention - unit radius disc at nullity height placed above disc at infinity

Transcomplex Multiplication and Division

- Polar multiplication and division are screws - a composition of rotation and translation

Transcomplex

Addition and Subtraction

- Draw polar vector $[r, \theta]$ as a unit vector $[1, \theta]$ on the disc at height r
- Let m be the maximum height of the unit vectors in the diagram
- Scale all vectors below maximum height by $1 / m$
- Move all vectors $[r / m, \theta]$ to the disc at height m

47 of 69

Transcomplex

Addition and Subtraction

- Perform vector addition
- Scale resultant vector by m
- Redraw resultant vector $[r, \theta]$ as unit vector $[1, \theta]$ in the disc at height r
- This extends Newton's sum of directed line segments to all transreal numbers so Newton's 18th Century physics works at singularities

Transcomplex

Addition and Subtraction

- For all transreal t

$$
\begin{aligned}
& {[\Phi, \Phi]+[t, \theta]=} \\
& \Phi\{[1, \Phi]+[t / \Phi, \theta]\}= \\
& \Phi\{[\Phi, \Phi]+[\Phi, \Phi]\}= \\
& {[\Phi, \Phi]}
\end{aligned}
$$

- $[\infty, \theta]-[\infty, \theta]=$
$\infty\{[1, \theta]-[1, \theta]\}=$ $\infty[0,0]=$ $[\Phi, \Phi]$
- For all real r

$$
\begin{aligned}
& {\left[\infty, \theta_{1}\right]+\left[r, \theta_{2}\right]=} \\
& \infty\left(\left[1, \theta_{1}\right]+\left[r / \infty, \theta_{2}\right]\right)= \\
& \infty\left(\left[1, \theta_{1}\right]+[0,0]\right)= \\
& \infty\left[1, \theta_{1}\right]= \\
& {\left[\infty, \theta_{1}\right]}
\end{aligned}
$$

Transcomplex Cone

Transcomplex Plane

- Project onto a plane

Non-Associativity

- After renormalisation, to the disc at height infinity, the sum of infinite vectors can be nonassociative
- Before renormalisation, the sum of arbitrarily many infinite vectors is associative

Algebraic Structure

- Multiplying by infinity can be non-distributive
- Adding infinite vectors can be non-associative
- Nonetheless transreal and transcomplex arithmetic are total

Transcomputation

- Prototype transcomputer in hardware and software emulation

Architectural Prototype

- Token = 12-bit header +80 -bit transfloat datum
- 64 k mills per chip
- 2 M mills per board
- 16 M mills per cabinet
- 20 kW per unweighted Wassenaar Peta FLOP (PWFLOP)

55 of 69

I/O

- Systolic arrays have one dimensional I/O which has linear scaling and is impossible to fabricate
- Architectural prototype uses zero dimensional I/O which has constant scaling and can be fabricated

Relative Addressing

- Fixed size, relative address implements an address horizon in an arbitrarily large machine and maintains constant computational efficiency regardless of the size of the machine
- Small horizon keeps the token header small

Processor Grid

- Square grid of mills
- Pipelined communication not just nearest neighbour

Slipstream

- A grid of mills may be arranged in any dimensionality of space (2D is convenient for chips!)
- The nodes of the grid are coloured by the configuration state of the mills
- A Turing program is a directed graph in a grid
- A slipstream program is an acyclic graph in a grid

Slipstream

- Slipstream programs execute in a cadence (period) of the longer of the input and output times
- Programs with shared data, such as molecular dynamics, may have many copies of a program that share data so the average cadence is less than one and the limit of the cadence, with increasing machine size, can be zero!

Slipstream

- A practical slipstream machine cannot achieve a cadence of zero
- But the ratio of the execution time of a practical slipstream machine versus a practical von Neumann serial or parallel machine can be infinity - slipstream dominance
- Quantum computers can be slipstreamed

FFT

- Fourier Transform (FT) time order $O\left(n^{2}\right)$
- Fast Fourier Transform (FFT) time order $O(n \log n)$
- Slipstream FFT time order $O(n)$

Slipstream FFT

- Multitap liner-time processing:
- Sharpened radar image
- Detected objects
- Identified objects

Slipstream FFT

- Turing-complete compiler
- Optimisers
- Optimise cadence
(1)

Summary

- If Newton's arithmetica universalis is restricted to real arithmetic then his 18th Century physics fail at singularities
- If Newton's arithmetica universalis is stated in transreal arithmetic then his 18th Century physics succeed at singularities

Summary

- Totality - every function is a total function
- It is not necessary to waste states - so hardware and software can be more efficient
- Market opportunity to sell transcomputing FPGAs, ASIC IP cores, turnkey systems
- Marketing advantage of selling computers without an astronomical number of errors

Summary

- Transfloating-point arithmetic is up to twice as accurate as floating-point arithmetic, using the same number of bits
- Every syntactically correct program is semantically correct - except for physical intervention, programs cannot crash
- On average pipelined programs, with shared data, can complete execution in less than one clock cycle

Summary

- There are many areas of transmathematics, its application and meta theory that are not presented here

Summary

- More than 10 people have published transmathematics in conference proceedings and journals, about half are computer scientists
- Transmathematica journal
- Transmathematica conference
- Transmathematica society holds weekly Skype meetings on Mondays at 17.00 London time

